Lua Hacks

lua-users home
wiki

This page lists Lua hacks. We use hack in the following manner taken from Wikipedia [1]:

In modern computer programming, a "hack" can refer to a solution or method which functions correctly but which is "ugly" in its concept, which works outside the accepted structures and norms of the environment, or which is not easily extendable or maintainable (see kludge)....In a similar vein, a "hack" may refer to works outside of computer programming. For example, a math hack means a clever solution to a mathematical problem.

Hacks can be less elegant, less practical, and less recommended than LuaDesignPatterns. However, they are still interesting for academic value. They may lead to more elegant solutions or provide useful inspiration on other problems.

Each hack is identified with a name and contains a description of what it tries to do and how it does it.

Some examples use getfenv or setfenv, which were retired after Lua 5.1.

Hacks on other Pages

Hack: Modules a la Perl

The following example makes Lua behave like Perl's Exporter/import thing for exporting module variables into the caller namespace.

-- file test.lua

local mymodule = require("mymodule")

assert(hello == nil) -- not imported

mymodule.hello()



local mymodule = require("mymodule"):import{"hello"}

hello()

assert(goodbye == nil) -- not imported

assert(mymodule.print == nil) -- not visible

 

require("mymodule"):import{":all"}

goodbye()

-- file mymodule.lua

 

-- Globals get collected by this table.

local collector = {}

setfenv(1, setmetatable(collector, {__index = _G}))

 

-- Now define the module functions.

 

function hello()

  print("hello?")

end

function goodbye()

  print("goodbye?")

end

 

-- Used to import functions into caller namespace

-- (like in Perl's "import" function in Exporter.pm)

function import(self, option)

  -- convert any option list to set

  local optionset = {}

  for _,v in ipairs(option) do optionset[v] = true end

  -- import selected variables into caller namespace

  local env = getfenv(2)

  for k,v in pairs(collector) do

    if optionset[":all"] or optionset[k] then env[k] = v end

  end

  return self

end

 

-- Return public module object (don't expose globals)

local mymodule = {}

for k,v in pairs(collector) do mymodule[k] = v end

return mymodule


-- output

hello?

hello?

goodbye?

Note: It's preferrable to use things like mymodule = requre "mymodule"; local hello = mymodule.hello instead, which only import a single symbol into your namespace (cleaner). import{":all"} has similar uses and disadvantages of Java's static import.

--DavidManura, 2006-10, Lua 5.1

Hack: Dynamically Scoped Variables

Warning: the following is academic and isn't really recommended for most situations.

Back in the good-ol'-days, before the popularity of static scoping, we had dynamic scoping ([Wikipedia:Scope_(programming)]). Let's simulate that in Lua.

To do so, we can create a function that wraps the provided function to apply dynamic scoping to certain variables:

-- (func, varnames*) --> func

function dynamic(func, ...)

  local varnames = {...}

  local saves = {}

  return function(...)

    for _,varname in ipairs(varnames) do saves[varname] = _G[varname] end

    local result = pack2(func(...))

    for _,varname in ipairs(varnames) do _G[varname] = saves[varname] end

    return unpack2(result)

  end

end

The above function uses the pack2 and unpack2 functions from the "Vararg Saving" design pattern in VarargTheSecondClassCitizen. dynamic saves and restores the values of the given global variables before and after the function call, thereby simulating dynamic variables. Here's an example usage:

test2 = dynamic(function()

  print("test2:", x, y)

  x = 6

  y = 7

  return x, y

end, 'y')



test1 = dynamic(function()

  print("test1:", x, y)

  x = 4

  y = 5

  print("test2:", test2())

  print("test1:", x, y)

end, 'x')



x = 2

y = 3

test1()

-- Output:

--   print("main:", x, y)

--   test1:  2       3

--   test2:  4       5

--   test2:  6       7

--   test1:  6       5

--   main:   2       5

Note: languages that support RAII ([Wikipedia:Resource_Acquisition_Is_Initialization]) can implement this with RAII. There may be some ways to simulate RAII in Lua (LuaList:2006-09/msg00846.html).

The above code does not properly handle functions that raise exceptions. That would require inserting a pcall into dynamic.

--DavidManura, 2007-01

Pattern: Local by Default Scoping

Warning: the following is academic and isn't really recommended for most situations.

In Lua, if you assign a value to an undefined variable, the variable is created as a global rather than a local. Let's change this to make variables local by default (like in Python [2]). By "local" we mean in the sense of smallest lexical scope, not in the Lua implementation sense of being stored in the Lua stack (here, we internally implement locals with globals on the heap).

As in the previous "Dynamically Scoped Variables" design pattern, we create a utility function that wraps other functions that we want to assign this behavior to and makes use of the pack2 and unpack2 functions:

function localbydefault(func)

  local upenv = getfenv(2)

  local mt = {}; mt.__index = upenv

  return function(...)

    local env = setmetatable({}, mt)  -- storage for locals



    local oldenv = getfenv(func)

    setfenv(func, env)

    local result = pack2(func(...))

    setfenv(func, oldenv)

    return unpack2(result)

  end

end

This causes a temporary environment for locals to be created for each function call.

Example:

test2 = localbydefault(function()

  print("test2:", x, y)

  x = 6; y = 7

  _G.z = 8

  return x, y

end)



test1 = localbydefault(function()

  print("test1:", x, y)

  x = 4; y = 5

  print("test1:", x, y)

  print("test2:", test2())

  print("test1:", x, y)



  localbydefault(function() -- nested

    print("test3:", x, y)

    x = 9; y = 10

    print("test3:", x, y)

  end)()

  print("test1:", x, y)

end)



x = 2

test1()

print("main:", x, y, z)

-- Output:

--   test1:  2       nil

--   test1:  4       5

--   test2:  2       nil

--   test2:  6       7

--   test1:  4       5

--   test3:  4       5

--   test3:  9       10

--   test1:  4       5

--   main:   2       nil     8

Note how globals can be accessed via the _G variable.

This approach works for recursive functions too:

fibonacci = localbydefault(function(n)

  if n == 1 then return 0

  elseif n == 2 then return 1

  else

    x1 = fibonacci(n - 1)

    x2 = fibonacci(n - 2)

    return x1 + x2

  end

end)

assert(fibonacci(10) == 34)

The above function was written to use temporary variables in such a way that it would fail if those temporary variables were globals rather than locals (e.g. try removing the localbydefault from that). However, x1 and x2 are indeed lexically scoped locals, and the function works.

-- David Manura, 2007-01

//Comment: What is pack2 and unpack2

Hack: Mimicking C++ Iostreams

Warning: the following is academic and isn't really recommended for most situations.

C++ iostreams [3] are used as such:

#include <iostream>

using namespace std;

int main()

{

    cout << "hello" << "world" << 123 << endl;

    return 0;

}

We can mimick that in Lua as such.

cout = function (str)

  if str ~= nil then

    io.write(tostring(str), " ")

  else

    io.write("\n")

  end

  return cout

end

Example usage:

cout "hello" "world" (123) () --> "hello world 123\n"

You might even add sticky formatting functions too:

cout "asdf" (intfmt(3)) (i)

See also SimpleStringBuffer for a related example.

Hack: Accessing Lexical Variables in the Caller / Lexical String Interpolation

Warning: the following is academic and isn't really recommended for most situations.

As shown in StringInterpolation, one can define a function that access variables lexically scoped in its caller:

local x = 3

assert(interp "x = ${x}" == "x = 3")

This is done via the debug.getlocal.

Another application for this might be to eliminate the need for passing locals in "Stringified Anonymous Functions" in ShortAnonymousFunctions.

--DavidManura

Hack: Modifying Bytecode

This example modifies bytecode at run-time. Possibly more useful tricks could be based on it. Note that string.dump does not preserve up-values, which limits the usefulness of this (but see also PlutoLibrary).

function add(x,y) return x + y end

function test(x,y)

  print("here is waht the answer is...")

  print("teh answer is", add(x,y))

end

 

local replacements = {

  ["teh"] = "the",

  ["waht"] = "what"

}

function fix_spelling()

  local env = getfenv(2)

  for k,v in pairs(env) do

    if type(v) == "function" then

      local success, bytes = pcall(function() return string.dump(v) end)

      if success then

        local is_changed, n = false, nil

        for k,v in pairs(replacements) do

          bytes, n = bytes:gsub(k, v)

          is_changed = is_changed or (n > 0)          

        end

        if is_changed then

          env[k] = assert(loadstring(bytes))

        end

      end

    end

  end

end

 

fix_spelling()

 

test(2,3)


$ lua test.lua

here is what the answer is...

the answer is   5

--DavidManura, 2007-03

Hack: Proxy Table of Local Variables, _L

Warning: this example is academic and not really intended for production use.

Here's how we might create a proxy table that does reading/writing of local variables an get/set. Internally it uses debug.getlocal and debug.setlocal calls, which is what makes this a hack.

-- Returns a proxy table representing all locals visible to the

-- given stack level <level>.  The table is readable

-- and writable (writing modifies the local).

--

-- If <level> is nil, the default used is 1,

-- which indicates the stack level of the caller.

--

-- NOTE: This function is based on debug.getlocal()

-- and may be slow.

do

  local Nil = {} -- placeholder (for storing nils in tables)

  local function getstackdepth(level)

    local n = 1

    while debug.getinfo(n+level+1, "") ~= nil do n=n+1 end

    return n

  end

function getlocals(level)

  level = (level or 1) + 1



  -- Note: this correctly handles the case where two locals have the

  -- same name: "local x=1; local x=2 ... get_locals() ... local x=3".



  local mt = {}

  local proxy = setmetatable({}, mt)

  local levels = {}   -- map: variable name --> stack level

  local indicies = {} -- map: variable name --> stack index



  local depth = getstackdepth(level)



  for k=1,depth do

    -- Determine number of locals (nlocs)

    -- Note: it would be easier if debug.getinfo returned nlocs.

    local nlocs = 0

    while debug.getlocal(level, nlocs+1) do nlocs = nlocs + 1 end



    -- Record locations of locals by name.

    for n=nlocs,1,-1 do

      local lname, lvalue = debug.getlocal(level, n)

      if lvalue == nil then lvalue = Nil end  -- placeholder

      if not levels[lname] then  -- not shadowed

        levels[lname] = level

        indicies[lname] = n

      end

    end

    level = level + 1

  end



  -- proxy handlers for read/write on table.

  function mt.__index(t, k)

    local depthdiff = getstackdepth(2) - depth

    if depthdiff < 0 then error("stack out of scope", 2) end

    local level = levels[k]

    local v

    if level then

      level = level + depthdiff  -- a correction

      local _; _, v = debug.getlocal(level, indicies[k])

      if v == Nil then v = nil end

    end

    return v

  end

  function mt.__newindex(t, k, v)

    local depthdiff = getstackdepth(2) - depth

    if depthdiff < 0 then error("stack out of scope", 2) end

    local level = levels[k]

    if level then

      level = level + depthdiff  -- a correction

      debug.setlocal(level, indicies[k], v)

    end

  end



  -- note: "stack out of scope" could be made more robust (see test suite)



  return proxy

end end



-- test suite

function test()

  local function update(L)

    assert(L.x == 10)

    L.x = 20

  end



  local L2



  local x = 1

  local y = 3

  local z = 5

  function f1()

    local x = 2

    local y = nil

    local x = 4

    local _L = getlocals()

    assert(_L.w == nil)

    assert(_L.x == 4)

    assert(_L.y == nil)

    assert(_L.z == 5)

    _L.z = 6  -- modify local through table!

    assert(z == 6 and _L.z == 6)

    z = 7

    assert(z == 7 and _L.z == 7)

    _L.x = 10

    assert(x == 10 and _L.x == 10)

    update(_L)

    assert(x == 20 and _L.x == 20)



    L2 = _L



    local x = 5  -- doesn't interfere

  end

  f1()



  -- Note: L2 is invalid at this scope.

  -- print(L2.x)  -- will correctly raise an error

  -- L2.x = 1  -- will correctly raise an error

  -- update(L2) -- opps, this doesn't trigger "stack out of scope"



  print "done"

end

test()

--I did not write the above, I'm a totally different person--

I really find this page interesting. I read through these trying to understand them. I didn't understand the title or the code with this one, so I decided to skip over it. Now just recently I did exactly what this code does, but shorter, and more efficient.

Using this code, _L always exist, it does not have to be redefined over and over with '_L = getlocals()' it is also readable and writeable. It is much simpler to understand and not as overcomplicated as the code above. The code is as follows;

--Setup--

setlocal = function(lvl, name, val)

   local setlocal = saved

   if lvl ~= 0 then

      lvl = lvl + 1

   end

   local i = 1

   while true do

      local var, value = debug.getlocal(lvl, i)

      if not var then

         break

      end

      if var == name then

         debug.setlocal(lvl, i, val)

      end

      i = i + 1

   end

end

--End of setup--



--Code--

setmetatable(_G, {

   __index = function(tab, var, val)

      if var == "_L" then

         local variables = {}

         local idx = 1

         while true do

            local ln, lv = debug.getlocal(2, idx)

            if ln ~= nil then

               variables[ln] = lv

            else

               break

            end

            idx = 1 + idx

         end

         return setmetatable({}, {

            __index = variables,

            __newindex = function(tab, var, val)

               rawset(variables, var, val)

               setlocal(2, var, val)

            end

         })

      end

   end

})

--End of code--



--Tests--

local a = 1

print(a)

_L.a = 5

print(a)

print(_L.a)

--End of tests--

I feel as if I should give credit to u0b34a0f6ae from stackoverflow for providing part of the setlocal function, which he posted here; "http://stackoverflow.com/questions/2834579/print-all-local-variables-accessible-to-the-current-scope-in-lua" (It was marked as best answer)

I'm currently trying to implement a metatable for _L comment underneath here if you have any ideas on how I could do this.

Hack: User-defined Control Structures and Keywords

The following simulates user-defined control structures and keywords, allowing a certain level of metaprogramming. (See also RuntimeSyntax.)

local Expr = {}



local function ev(o) -- terminate and eval expression

  if getmetatable(o) == Expr then return o.END() else return o end

end

function Expr.__unm(a) return -ev(a) end

function Expr.__len(a) return #ev(a) end

function Expr.__add(a, b) return ev(a) + ev(b) end

function Expr.__sub(a, b) return ev(a) - ev(b) end

function Expr.__mul(a, b) return ev(a) * ev(b) end

function Expr.__div(a, b) return ev(a) / ev(b) end

function Expr.__pow(a, b) return ev(a) ^ ev(b) end

function Expr.__concat(a,b) return ev(a) .. ev(b) end

function Expr.__eq(a,b) return ev(a) == ev(b) end

function Expr.__lt(a,b) return ev(a) < ev(b) end

function Expr.__le(a,b) return ev(a) <= ev(b) end

function Expr.__index(a,b) return ev(a)[ev(b)] end

--function Expr.__newindex(a,b,c) ev(a)[ev(b)] = ev(c) end

function Expr.__call(o, ...)

  if ... == ';' then return o.END()

  elseif o.__CALL then return o.__CALL(...)

  else return ev(a)(...) end

end



function Expr:clear()

  for k,v in pairs(self) do self[k] = nil end

end



local function eval(t)

  if type(t) == "function"  or getmetatable(t) == Expr then return t() end



  local s = ""

  local ts = {}

  local vals = {}

  if type(t) == "table" then

    for k,v in pairs(t) do

      if type(k) ~= "number" then

        vals[#ts+1] = v

        ts[#ts+1] = k

      end

    end

    t = t[1]

    s = ((#ts > 0) and "local " .. table.concat(ts, ",") .. " = ...; " or "")

  end

  local s = s .. "return " .. t

  local f = loadstring(s)

  return f(unpack(vals, 1, #ts))

end

--print(eval {[[x+y]], x = 2, y = 5})



function Expr.EVAL (expr)

  return eval(expr)

end



function Expr.IF (cond)

  local o = setmetatable({}, Expr)

  function o.THEN (stat)

    o:clear()

    function o.END ()

      if (eval(cond)) then

        eval(stat)

      end

    end

    o.__CALL = o.END

    return o

  end; return o

end



function Expr.LET (name)

  local o = setmetatable({}, Expr)

  function o.EQUAL (expr)

    o:clear()

    function o.END ()

      _G[name] = eval(expr)

    end

    function o.IN (expr2)

      o:clear(); function o.END()

        local oldval = _G[name]

        _G[name] = eval(expr)

        local function helper(...)

          _G[name] = oldval

          return ...

        end

        return helper(eval(expr2))

      end; return o

    end; return o

  end

  o.__CALL = o.EQUAL

  return o

end



function Expr.FOR (var)

  local o = setmetatable({}, Expr)

  function o.FROM (i1)

    o:clear(); function o.TO (i2)

      o:clear(); function o.DO (expr)

        o:clear(); function o.END()

          for n=eval(i1),eval(i2) do

            _G[var] = n

            eval(expr)

          end

        end; return o

      end; return o

    end; return o

  end

  return o

end



Expr.__index = Expr



setmetatable(_G, Expr)



-- TEST



LET 'x' .EQUAL '1' ';'

LET 'y' .EQUAL '3' ';'

IF 'x == 1' .THEN 'print(x+2)' ';'

FOR 'n' .FROM '1' .TO '3' .DO (

  IF 'n > 1' .THEN 'print(n,x)'

) ';'

print(1 + (LET 'x' '2' .IN 'x*y') + 1)

print(EVAL 'x')



--[[OUTPUT:

3

2       1

3       1

8

1

--]]

-- DavidManura, 2007-07

Hack: Ruby-like Symbols

Ruby has a feature called Symbols, which implements string-interning with a special syntax. There it's common practice to use symbols as the keys to hashes. As Lua already does string-interning by default, this hack is academic. It works by abusing the __index metamethod, filling with a function that just returns the key it was queried for as the value.

S=setmetatable({},{__index=function(S,k) return k end})

print( S.Symbol_Name )

A more useful expression of this hack would be as an alternative to any form of creating an enumeration table via a function. The string is cached for performance. Also, its been formatted for readability.

Enum = setmetatable( {}, {

  __index=function(E, k)

    E[k] = k

    return k

end})



print( Enum.Apple, Enum.Banana, Enum.Carrot )

Hack: Require module without quotes

Similiar to abusing the __index metamethod for ruby-style symbols, we can skip the need to enclose a module name in quotes when requiring it. This one builds up a string at the dot notation, as modules could be hidden deep in a directory tree. The arbitrary limit is that the directory structure assumes the first subdirectory. The require function needs to be wrapped as well, as it doesn't try to perform tostring on tables passed in.

do

  local wrap_require = require

  require = function(t) wrap_require(tostring(t)) end

  local mt = {}

  function mt:__index(key)

    return setmetatable({path=rawget(self, "path").."."..key}, mt)

  end

  function mt:__tostring()

    return rawget(self, "path") or ""

  end

  lib = setmetatable({path="lib"},mt)

end

do



require(lib.foo.bar)

Hack: s(g)etfenv in Lua 5.2

In Lua 5.2 both setfenv and getfenv were deprecated and removed. Although many prefer the dynamic enviorments, as opposed to lexical ones. The idea to this was that enviorments should not be accessible outside it's function. Though many of the hacks on this page use these. They are great for testing purposes, although not really reccomended in regular use, or as a major part of your program because it uses the debug library, which breaks some general Lua rules, and can be slow.

I did not write these, I found them both on the Internet and thought they deserved a place here, together. I think they were both posted on stackoverflow, a quick google search will reveal who wrote them. Here's the code:

--Setup

function setfenv(f, t)

   f = (type(f) == 'function' and f or debug.getinfo(f + 1, 'f').func)

   local name

   local up = 0

   repeat

      up = up + 1

      name = debug.getupvalue(f, up)

   until name == '_ENV' or name == nil

   if name then

      debug.upvaluejoin(f, up, function() return t end, 1)

   end

end



function getfenv(f)

   f = (type(f) == 'function' and f or debug.getinfo(f + 1, 'f').func)

   local name, val

   local up = 0

   repeat

      up = up + 1

      name, val = debug.getupvalue(f, up)

   until name == '_ENV' or name == nil

   return val

end



--Tests

function x()

   print(hi)

end



x() --nil

print(hi) --nil

setfenv(x, {print = print, hi = 5})

x() --5

print(hi) --nil



for i,v in pairs(getfenv(x)) do

   print(i, v)

end

--print function address

--hi 5

setfenv(x, {})



x() --attempt to call global 'print' (a nil value)


RecentChanges · preferences
edit · history
Last edited August 23, 2014 5:59 am GMT (diff)